
============================[Topic]===============================

The topic I have chosen for my individual project is combat design. Specifically combat

design in Baldur’s Gate 3. Baldur’s Gate 3, created by Larian Studios, is a role-playing video

game based on the tabletop role-playing system of Dungeons & Dragons 5e. I chose this topic

because I had been playing the game a ton and when looking for a topic, MJ suggested I do the

combat in BG3. Working on this project has taught me the complexity of turn based combat

when translating it into code. This is due to the various conditions that need to be met. I started

playing BG3 about 3 months into its release. Currently I have 237.2 hours playing BG3

according to my Steam library.

============================[Logic]===============================

Unlike its previous iterations, BG3 is turn based since it is based upon D&D 5th Edition.

In this link or on my webpage matthewsareaofwork.com I have placed the program that I wrote.

It is based on how BG3’s combat works in a simpler scenario. In the game, the player usually

controls up to four characters while fighting various enemies. For the simplicity of the program, I

have decided to make it a 1v1, a human fighter vs a goblin fighter without movement.

Here are the stat blocks from the game that I used to base the stats and actions of my program:

https://py3.codeskulptor.org/#user308_tY9OE4rAiYWOagq.py
https://matthewsareaofwork.com/


Note: Please pull up the code that I linked in order to see what I will be referring to. In addition,

at the start of a new section of the code, I have put a comment titling the section including the

lines of code they occupy. I have also included comments on the program for a more in depth

explanation

—

Lines: 1-42

D&D is a dice based game, in order to create dice rolls I have used the “import random” function

in order to use random numbers. Following that I have placed the character’s (Tav’s) stat block

and used a formula that D&D 5th edition uses to calculate bonuses granted by the character’s

stats and labeled them (stat)Bonus. The other variables are meant to give and take away certain

resources/conditions the character has.

—

Lines: 44-87

This is exactly the same as Tav’s section except the variables have been renamed to fit the

goblin.

—

Lines: 90-302

These lines contain several functions that, when called, perform the code contained. These

functions are the attack actions for Tav. These functions will roll to check if it hits the goblin,

deals damage,

—

Lines: 304-327



These lines contain two functions that, when called, perform the code contained. These functions

perform potion drinking. The potions given at lvl 1 are 2d4+2, the function heals the drinker and

is programmed to not go over the maximum hp a character has.

—

Lines: 329-460

These functions act the same way as Tav’s attack functions, except the goblin doesn’t have

access to pommel. All of the variables are different but act the same way as before.

—

Lines: 463-483

These lines of code display messages showing that initiative is being rolled. Initiative was

actually already rolled in the stat blocks at the beginning. I used an if else statement in order to

determine who goes first based on who had the higher initiative. The appropriate variable is then

set to 1 and that activates that character's turn. The combat actually starts on the last line of this

section with the while loop, as long as one of the HPs are above 0 the code keeps looping.

—

Lines: 485-565

These lines of code are what help Tav’s turn function. When the TavTurn variable is set to 1 and

goblin is at 0, Tav’s turn starts. The first part will display a message that shows the turn has

started. The second part is to check if Tav possesses the bleeding condition, if so it will deal the

appropriate damage to Tav. The third part is what determines what actions Tav takes. The code

will ask the user to input a number between 1-4 (Attack, Pommel, Drink, END). Once a number

is selected, you will select another number in order to make sure you want to perform the action.

Once a number is inputted, the appropriate function is called. If you performed an action/bonus



action already in the turn and try to do it again, it will deny you permission to perform the

action/bonus action. If you used an action/bonus action that has a limited amount of uses

(Pommel, Lacerate, Potions), the moment you use it, the number of uses will be reduced. It will

also not let you use it anymore if there are no more uses.

—

Lines: 567-573

These lines of code encompass the turn switch once Tav’s turn is over. It will restore Tav’s

action/bonus action and set TavTurn to 0 and Goblin to 1, fulfilling the condition for the Goblin’s

turn to start.

—

Lines: 577-612

These lines of code encompass the workings of the goblin’s turn. Like Tav’s, it will first

determine if the goblin is bleeding and/or dazed. The dazed condition is given when Tav hit’s the

goblin and it fails its constitution saving throw. If the goblin fails, the dex bonus it has to its

armor class is removed. This lasts for two rounds. Once the conditions are checked, The goblin

will determine if it has an action, if so, it will determine if it has a use of its lacerate ability (1

time use). If so, it will automatically use that as its attack. If not, it will use its standard battleaxe

attack. Then it will determine if it has a bonus action and it has less than 9 HP. If so, the goblin

will drink a potion. Once actions are done, its turn ends.

—

Lines: 614-621

These lines of code act the same as Tav’s turn switch once their turn ends. Restores action/bonus

action and then switches goblin to 0 and TavTurn to 1.



—

Lines: 625-629

Once either Tav or the goblin is defeated (HP = 0), a message will be displayed depending on

which character died.

==========================[Wrap Up]=============================

The things I learned during this project were somewhat expected and some not.. I knew that it

was going to be somewhat long since a turn based game usually has multiple conditions that

need to be met and performed. I didn’t know however, how frustrating it would be to name each

variable to make them somewhat different from each other. While working on this project, I have

learned that coding is incredibly rewarding once you manage to figure out the systems and make

them work. I originally thought the difficulty I would have would be figuring out how to create

the functions that I used, but really it was naming the variables.


